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1 Introduction and Overview

TIle motion of points ((,r other image structures, such as lines or regions) in a two-

dimensional image of an evolving three-dimensional environment ca,, be used to find in-

formation about that environment, and how it is changing with time. As examples of such

information one might want to recover the translational and rotational components of the
.'
-a,

motion of particular points in the environment, the distance of such points from the image

plane of the sensor (the depth), or how the environment is segmented into independent

objects. J%

".r

At the University of Massachusetts, we have developed a number of algorithms for p

recovery of such information from a sequence of images (frames) of the environment. Our

approaches fall generally into two classes. In the first class we follow a two-step paradigm.

We first calculate the motion of individual points in the image. This leads to a two-

dimensional velocity field in the image called the optical flow field. The second step is to

use the optical flow field to calculate both the structure of the environment, and the relative

motion between frames (its motion parameters). In the second class the computation of

optical flow and recovery of environmental depth are done concurrently. %.

Let us initially give an overview of the first class of algorithms mentioned above. Anan-
It.

(Ian JANA87cj has developed a method for computing optical flow from a sequence of two ..

images which, in addition to computing a dense flow field (i.e. a velocity vector for each -- , .

point in the image). uses information in the image to indicate which flow vectors are reli-

able and which are not. The algorithm has been tested on a wide variety of both synthetic

and real image sequences and has been found to be quite robust against. the corrupting -"X

efre- . u m, dud Iher image imperfections. .Otc. "  . . .,,
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The algorithm of Adiv [ADI85b] uses Anandan's optical flow to robustly compute the

sensor motion parameters, the depth of environmental points, object masks for indepen-

dently moving objects, and the 3D motion parameters of these objects. It is also the only

algorithm in the literature that has been demonstrated to compute these quantities in real

image sequences containing independently moving objects. Adiv also discusses algorithm-

independent ambiguities that arise in the recovery of motion parameters and object masks.

This analysis is important in helping to decide in what situations an algorithm can be ex-

pected to be effective.

The computation of optical flow and environmental information can also be done con-

currently. This is easiest for specific types of motion, for instance when the motion is

purely translational. In this case, it is well known that the motion of image points is

extremely simple. They move in straight lines away from a single image point known as

the Focus of Expansion (FOE). Knowledge of the position of the FOE in the image plane

is equivalent to knowing the direction of translation. Lawton [LAW84 has developed an

algorithm for computing the position of the FOE. Lawton's FOE-finding algorithm was

subsequently improved in the work of Pavlin [PAV86]. ,-

When the motion of the camera is purely translational, the depth of environmental

points can be found from the position of the FOE and the position of the corresponding

image point in two frames of the image sequence. Bharwani, et al. [BIA85,86] developed

an algorithm which iteratively refines the computation of environmental depth over a

sequence of more than two frames so as to get more and more accurate depths as one

* progresses through the envirnnment, with a constant compltz, i,faal 'uad bckvccn famv .

When the camera motion is known to be purely translational, this algorithm is quite
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Unfortunately. in almost all practical imaging situations, it is difficult to ensure that the

camera motion is purely translational. A real vehicle moving on a real surface will produce

an image sequence in which the image motion will not be due purely to translational

motion, but will have an added rotational component. There are two ways to deal with

this complex real-world situation. The first way is to eliminate the rotational component

of the motion, so that the algorithms which assume purely translational motion can be

used. The second way is to use an algorithm which is suitable for general motion (rotation

as well as translation). We developed an algorithm (a Registration Algorithm) which finds

the rotational component of motion, and then removes it from the image sequence so as to

produce a new ("registered") image sequence in which the motion is purely translational.

We found that the rotational component could not be accurately recovered, and so the N

registered image sequence still had a small rotational component to its motion. This small

rotational component made the determination of the FOE very unstable. This means that

the direction of the translational component of the motion is unreliable, and hence so

will be the computed depth values. We concluded from this that algorithms which assume

purely translational motion will give unreliable results in most practical imaging situations '.

[DUT88].

The only alternative to "registering" an image sequence before applying a purely trans-

lational algorithm is to use a general motion algorithm which makes no special assumptions

about the motion. i.e. the combination of Anandan and Adiv algorithms. The general mo-

tion algorithm wac tested n the same scquciice cf images for whiji the ",egisfra.ion"

had given poor results, and found that the results were significantly improved, an average
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error of 8.9% in the depth of a set of points. We are in the procP-s of further testing this

algorithm for future use on the Autonomous Land Vehicle.

We now discuss in greater detail the work supported by this contract.

2 Restricted Motion

In the case where the camera motion is purely translational, the finding of the FOE is

equivalent to knowing the direction of camera translation. In his Ph.D. Dissertation,

Lawton [LAW83,84] formulated an algorithm for finding the position of the FOE which
N

contains two steps: feature extraction and search. The feature extraction process picks out

small image areas which may correspond to distinctive parts of environmental objects. The

FOE is then found by a search which determines the image displacement paths along which

a measure of feature mismatch is minimized for a set of features. The correct FOE should N

minimize this error measure and also determine the corresponding image displacement

paths for which the extracted features match.

More recently, Pavlin [PAV86] evaluated the Lawton algorithm and found that it could
%

be applied effectively with the analysis of only 8 to 16 image points between frames if the

camera is pointed approximately in the direction of camera translation. In addition, the

algorithm was speeded up by improving the FOE search algorithm. This was accomplished

by computing the error measure for the assumed FOE from a sparser sampling of the

visual field (or a more restricted area if constraints on the possible location of the FOE

are available). Then, a smooth surface is fit to the error values at those points and the

computed niinirnrm of this surface is used to focus the search in the next step of an

iterative search process. Both algorithms have been tested on real image sequences with

44



good results.

When the camera motion is purely translational, knowledge of the FOE and the posi-

tion of an image point in successive frames of the image sequence allows one to calculate

the depth of the corresponding environmental point. Bharwani, et al. tBHA85,861 de-

veloped an algorithm which, if the camera motion is purely translational, will compute

increasingly more accurate depth information from a sequence of images. This algorithm

is intended to be applied after FOE recovery via the Lawton-Pavlin algorithm. The al-

gorithm matches points between frames up to some match resolution, computes a depth

range for the environmental point, and then uses this information to predict a smaller

search window in future frames, which then can be searched with finer match resolution

and consequently more accurate depth. An important characteristic of this algorithm is

that the temporal depth refinement can be applied at a constant computational rate and

therefore is well-suited for robot navigation.

As we mentioned, however, in a real image sequence, the presence of even small rota-

tional components of the camera motion (of the order of 0.1' to 0.50) can create havoc on

the FOE-finding algorithm. If the FOE cannot be reliably recovered, then the Bharwani

(or any other) algorithm cannot be expected to give reliable depth estimates. We discuss

this in greater detail in Section 6.

3 General Motion and Computation of the Optical

Flow Field

In his recently completed doctoral dissertation [ANA87cl Anandan provides a unified

framework for extracting a dense optical flow field from a pair of images, as well as an inte-

5
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grated system which is based on a matching approach (see, also, JAN A85a,b,ANA87a,b).

This framework appears to be sufficiently general to encompass both gradient-based and

correlation matching approaches. It consists of a hierarchical scale-based matching scheme

using bandpass filters, orientation-dependent confidence ireasures, and a smoothness con-

straint for propagating reliable displacements. His integrated system IANA86] for the

extraction of displacement fields uses the minimization of the sum-of-squared-differences

(SSD) measure as the local match criterion, and computes confidence measures based

on the shape of the SSD surface. It also formulates the smoothness assumption as the

minimization of an error functional and overcomes many of the difficult problems that

exist in other techniques. The error functional consists of two terms. One, called the

approximation error, measures how well a given displacement field approximates the local

match estimates, while the other, called the smoothness error, measures the global spa-

tial variation of a given displacement field. The finite-element method is used to solve

the minimization problem. The approach also gives information for extracting occlusion

boundaries in some situations.

Anandan has also shown [ANA87d] that the functional minimization problem formu-

lated in his matching technique converges to the minimization problem used in gradient-

based techniques (e.g. Glazer's technique discussed later). In particular, by relating an

approximation error functional used in his matching approach to the intensity constraints

used in the gradient based approaches, he explicitly identifies confidence measures which

have thus far been implicitly used in the gradient-based approach. Finally, he suggests

ways that algorithms operating on a pair of frames can be developed into multiple-frame

algorithms and discusses their relationship to spatio-temporal energy models.

6
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4 Multiresolution Methods

Glazer's recenlly completed thesis [(1LA\87cl presents an approach to m(ion detection %

using multi-resolution methods in a hierarchical processing architecture. Two motion de-

tection algorithms are developed and analyzed. The hierarchical correlation algorithm

utilizes a coarse-to-fine control strategy across the resolution levels and overcomes two

disadvantages of single-level correlation: large search areas requiring expensive searches

and repetitive image structures which cause incorrect matches. The hierarchical gradient-

based algorithm [GLA87a,b], generated over low-pass image pyramids, extends single-level

gradient algorithms t- the computation of large displacements. Within each level the next .

refinement of the displacement field is obtained by combining a local intensity constraint

and a global smoothness constraint. The mathematical formulation involves the minimiza-

tion of an error functional consisting of two terms, corresponding to the intensity and the

smoothness constraints mentioned above. The minimization problem is solved using the

finite-difference approach which leads to a multi-resolution relaxaticn algorithm. A formal

analysis of the hierarchical gradient algorithm is presented, including the basic equations

for computing a refined disparity vector, the discrete representations and computations

for solving these equations, and a geometric interpretation of the resulting relaxation algo-

rithm. The experimental results show that the two algorithms have comparable accuracy

and a cost analysis shows that the hierarchical gradient algorithm is less costly. 11
5 General Motion and Inherent Ambiguities

In his Ph.D. thesis [ADI85b}, Adiv discussed two problems: how to interpret optical flow U
fields in terms of independently moving rigid objects, and the circumstances under which

7,. ,
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such an interpretation is ambiguous. The first problem is important because in real situa-

tions the camera may not be the only thing in the environment which is moving, and the

second is important because it tells when environmental infotrmation can be expected to

be unreliable.

Adiv solved the first problem by developing an algorithm which could simultaneously

determine the sensor motion parameters, detect (i.e. find object masks) independently

moving objects and recover their associated object velocities, and environmental depth

[ADI85a]. This algorithm is the only one published which can robustly handle indepen-

dently moving objects. The algorithm consists of two stages. In the first stage, the flow "

field is partitioned into connected segments of flow vectors, where each segment is con-

sistent with a rigid motion of a roughly planar surface. Such a segment is assumed to

correspond to a part of only one rigid object. This initial organization of the data is

utilized in the second stage without the assumption of planar surfaces, and segments are

now grouped under the hypothesis that they are induced by a single rigidly moving object

and/or by the camera motion. Each hypothesis is tested by searching for environmen-

tal motion parameters which are compatible with all the segments in the corresponding

group. Once the motion parameters are recovered, the relative environmental depth can -

be estimated as well. The algorithm was tested on a number of synthetic and real image

sequences and found to be able to robustly recover all the environmental parameters.

Adiv then identifies two circumstances under which there are ambiguities in the com-

putation of the environmental parameters [ADl85cl. One such ambiguity occurs when the

motion parameters of a sensor or a moving object may be extremely difficult to estimate

because there may exist a large set of significantly incorrect solutions which induce flow
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fields similar to the correct one. The second occurs when 'le decom)osition of the flow S

field into sets corresponding to independently moving objects may be anibiguous becaise

two s1ch (,Ibjects may indice optical flows which are compatible with the same oition .4

parameters. These ambiguity analyses are called "inherent" in the sense that they are

algorithm independent. Adiv then discusses the constraints and parameters which can be

recovered even in amlbiguous situations.

6 Processing Approximate Translational Motion for

the ALV

Our previous research in motion analysis led us to attempt to deal with a real application

subsystem for the CMU NAVLAB [THO871. The goal was to detect obstacles in the path

of the vehicle at distances beyond the limits of the ERIM range sensor, i.e. at distances

beyond 40 feet. Initial results from Bharwani's algorithm implied the pos: ibility of ex-

tracting usable depth of obstacles at distances between 40 and 80 feet. By applying an

FOE extraction algorithm prior to the depth extraction algorithm, there was the expecta- r

tion that an effective subsystem could be developed. To accomplish this in actual imaging

situations on a moving vehicle turned out to be far more difficult than we expected.

In dynamic imaging situations where the sensor is undergoing primarily translational

motion with a relatively small rotational component (i.e. "approximate" translational

motio-,), it might seem likely that translational motion algorithms would be effective in

determining depth. Although translational motion is the dominant form of motion and is

approximately constant over a long sequence of frames, there usually are local variations .

due to irregularities in the road surface (bumis, holes, and indulations), as well as minor

(Io
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rotation of the vehicle as it translates. This is often manifested in changes in the location

of the FOE (i.e. effectively it produces a different, translatioal motion), and in rotational

motions that hiust ce removed if correct values of depth are to be extracted from the feature

displacements.\ n attempt to correct for these effects via a relatively simple preprocessing

"registration" algorithm, without utilizing full analysis of the general motion problem, also

led to difficulties, even when the rotations were as small as .1"to.5 ° . These issues and our

experimental efforts to deal with what we considered to be the relatively simple problem

of approximate translational motion are discussed in [DUT88].

The problems led us recently to apply the Anandan and Adiv algorithms for general

motion to the sequences of approximate translational motion, with significantly improved

results [DUT88]. The conclusion we draw is that in many real situations general motion

analysis must be applied in order to determine depth of points, even when sensor motion is

primarily translational with only small amounts of rotation. One obvious hardware solution

(at significantly increased cost) is the use of a gyro-stabilized platform or a land navigation

system to recover translational and rotational motion so that sensor motion typically will

be much closer to the case of pure translational motion. Alternatives to extract motion

parameters and depth are outlined in the next section. We will be exploring the utility of

these and the general motion algorithm discussed al)ove in the continuation of our work

oil the Autonomous Land Vehicle.

10,
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7 Other Motion Work

7.1 Steroscopic Motion Analysis

By carrying out motion analysis with a pair of cameras - stereoscopic moti,,n - the addi-

tional constraints can significantly reduce the complexity of the analysis on a theoretical

level. Balasubramanyam and Snyder [BAL87a,bl have developed an algorithm to extract

the parameters of motion in depth: the single component of translation in depth (i.e. par-

allel to the line of sight) and the two components of rotation in depth (i.e. rotations that

are not around the line of sight). This is achieved by building upon the work of Adiv

for segmenting the flow field into rigid independently moving objects [ADI85a], and the

formulatiVrn of Waxman and Duncan [WAX86], which shows that the ratio of the relative

optic flow between a stereo pair of images to the disparity between them is a linear function

of the image coordinates. Experimental results are presented for simulated data of general

motion of both the sensor and independently moving objects. Work is currently underway %

to test the effectiveness on real scenes. 0

7.2 Analysis of Constant General Motion

Another way to introduce additional constraints to the problem of general motion analysis

in an effort to achieve practical, robust algorithms is via Shariat's formulation: constant

but arbitrary general motion of a rigid object [SIIA861. This leads to a set of difference

equations across a sequence of images, relating the positions of a feature in the image
.

plane to the motion parameters of the projected point. The solution obtained is a set

Of 5th order non-linear polynomial equations in the unknown motion parameters, whose

solution requires a Gauss-Newton non-linear least-squares method with carefully designed

1U
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initial guess schemes. Pavlin [PA\"871 has derived a closed-form solution for the rigid

object trajectory by integrating the lifferential equations describing the motion of a point

on the tracked object. The integrated equations are non-linear only in angular velocity,

and are linear in all other motion parameters. These equations allow the use of a simple

4,

least-square error minimization criterion in an iterative search for the motion parameters.

8 Interpretation

During the life of this project, there have been a variety of efforts that have contributed to

the VISIONS system for object recognition and scene interpretation [DRA87,RIS86]. These P

have included low-, intermediate-, and high-level vision. This is part of our long-range

research effort to bring static interpretation together with motion analysis to produce a
p

dynamci interpretation system capable of providing the perception foundation for a mobile

robot.

.J.
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